Differential Geometry \rightsquigarrow Algebra \rightsquigarrow Combinatorics (\& back?)

SageDays @ ICERM - Providence 2018

Vít Tuček

Faculty of Science, University of Zagreb

Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Operativni program KONKURENTNOST I KOHEZIJA

Europska unija Zajedno do fondova EU

Outline

1. Differential Geometry \rightsquigarrow Algebra
2. Algebra \rightsquigarrow Combinatorics
3. Combinatorics + Algebra \rightsquigarrow Differential Geometry?

Differential Geometry \rightsquigarrow Algebra

Invariant differential operators

homogeneous space $G / P, P$-representation \mathbb{V}

$$
\begin{gathered}
\mathcal{V}=G \times_{P} \mathbb{V} \rightarrow G / P \\
\mathcal{D}: \Gamma^{\infty}(G / P, \mathcal{V}) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W}) \\
\mathcal{D} \circ \widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}} \circ \mathcal{D} \\
D: \Gamma^{\infty}\left(G / P, \mathcal{J}^{k} \mathcal{V}\right) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W})
\end{gathered}
$$

everything is equivariant $\rightsquigarrow D$ is determined by germ at $e P \rightsquigarrow$ $\varphi: J^{k} \mathbb{V} \rightarrow \mathbb{W}$

Passing to dual maps and taking the limit $k \rightarrow \infty$ we get

$$
\operatorname{Hom}_{\mathfrak{p}}\left(\mathbb{W}^{*}, \mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{V}^{*}\right) \simeq \operatorname{Hom}_{\mathfrak{g}}\left(\mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{W}^{*}, \mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{V}^{*}\right)
$$

Verma modules

G complex, P parabolic, $\mathfrak{p}=\mathfrak{l} \oplus \mathfrak{p}_{+}, \mathfrak{g}=\mathfrak{p}_{-} \oplus \mathfrak{l} \oplus \mathfrak{p}_{+}$
$\lambda \in \mathfrak{h}^{*}$ which is \mathfrak{l}-dominant integral and hence defines finite-dimensional L-module $\mathbb{F}(\lambda)$

$$
M(\lambda)=\mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{F}(\lambda)
$$

Open problem:

$$
\operatorname{Hom}_{\mathfrak{g}}(M(\mu), M(\lambda))=?
$$

Verma modules

G complex, P parabolic, $\mathfrak{p}=\mathfrak{l} \oplus \mathfrak{p}_{+}, \mathfrak{g}=\mathfrak{p}_{-} \oplus \mathfrak{l} \oplus \mathfrak{p}_{+}$
$\lambda \in \mathfrak{h}^{*}$ which is \mathfrak{l}-dominant integral and hence defines finite-dimensional L-module $\mathbb{F}(\lambda)$

$$
M(\lambda)=\mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{F}(\lambda)
$$

Open problem:

$$
\begin{aligned}
\operatorname{Hom}_{\mathfrak{g}}(M(\mu), M(\lambda)) & =? \\
& =\left\langle v \in M(\lambda) \mid \forall X \in \mathfrak{p}_{+} \cup \mathfrak{n}_{\mathfrak{l}}: X \cdot v=0\right\rangle
\end{aligned}
$$

One way to find elements in $\operatorname{Hom}_{\mathfrak{g}}(M(\mu), M(\lambda))$

$$
M(\lambda) \simeq_{\mathfrak{g}} \operatorname{Pol}\left[\mathfrak{p}_{+}\right] \otimes \mathbb{F}(\lambda)
$$

where the action of \mathfrak{g} on polynomials is given by differential operators with polynomial coefficients.
homomorphisms of Verma modules are given by singular vectors \rightsquigarrow system of PDEs on polynomials!

Algebra \rightsquigarrow Combinatorics

BGG resolutions and Lie algebra (co)homology

$\lambda \in \mathfrak{h}^{*} \mathfrak{g}$-integral, dominant $\rightsquigarrow L(\lambda)$ finite-dimensional \mathfrak{g}-module affine action of W :

$$
w \cdot \lambda=w(\lambda+\rho)-\rho
$$

BGG resolution

$$
\cdots \rightarrow \bigoplus_{\substack{w \in W^{\text {I }} \\((w)=i}} M(w \cdot \lambda) \rightarrow \cdots \bigoplus_{\substack{w \in W^{\text {I }} \\ I(w)=1}} M(w \cdot \lambda) \rightarrow M(\lambda) \rightarrow L_{\lambda}
$$

BGG resolutions and Lie algebra (co)homology

$\lambda \in \mathfrak{h}^{*} \mathfrak{g}$-integral, dominant $\rightsquigarrow L(\lambda)$ finite-dimensional \mathfrak{g}-module affine action of W :

$$
w \cdot \lambda=w(\lambda+\rho)-\rho
$$

BGG resolution

$$
\cdots \rightarrow \bigoplus_{\substack{w \in W^{\mathbf{1}} \\ M(w)=i}} M(w \cdot \lambda) \rightarrow \cdots \bigoplus_{\substack{w \in \mathcal{W}^{\mathbf{1}} \\ M(w)=1}} M(w \cdot \lambda) \rightarrow M(\lambda) \rightarrow L_{\lambda}
$$

Kostant's theorem on niplotent cohomology

$$
H^{i}\left(\mathfrak{p}_{+}, L_{\lambda}\right)=\bigoplus_{\substack{w \in W^{\prime} \\((w)=i}} \mathbb{F}_{w \cdot \lambda}=H_{i}\left(\mathfrak{p}_{+}, L_{\lambda}\right)
$$

Nilpotent cohomology / BGG resolution for $\operatorname{SU}(2,2)$

$$
(0,0,0) \longrightarrow(1,-2,1) \longrightarrow(0,-3,0) \longrightarrow(1,-4,1) \longrightarrow(0,-4,0)
$$

The BGG graph of type $\left(A_{7}, A_{3} \times A_{3}\right)$

Sage

Sage

For big parabolics much more efficient to use that $W^{〔}$ parametrizes W-orbit of ρ_{l}.

Enright's formula

$$
\lambda \rightsquigarrow S_{\lambda} \subseteq \Phi\left(\mathfrak{p}_{+}\right)
$$

$\rightsquigarrow W_{\lambda}$ - subgroup of W which is generated by reflections s_{α} for $\alpha \in S_{\lambda}$ $\rightsquigarrow\left(\mathfrak{g}_{\lambda}, \mathfrak{p}_{\lambda}\right), \quad \mathfrak{p}_{\lambda}=\mathfrak{l}_{\lambda} \oplus \mathfrak{p}_{\lambda+}$

Theorem (3.7 of [DES91])
For unitarizable highest weight modules $L(\lambda)$ and for $i \in \mathbb{N}$ we have

$$
H^{i}\left(\mathfrak{p}_{+}, L(\lambda)\right) \simeq \bigoplus_{\substack{w \in W^{c} \\ l_{\lambda}(w)=i}} \mathbb{F}(\overline{w(\lambda+\rho)}-\rho)
$$

where $\bar{\lambda}$ is the unique Φ_{1}^{+}-dominant element in the W_{l} orbit of λ and $W_{\lambda}^{c}=\left\{w \in W_{\lambda} \mid w \rho\right.$ is $\Phi_{\mathrm{I}_{\lambda}}^{+}$-dominant $\}$.

Deodhar, Dyer

For a Coxeter system (W, R) denote T to be the W-conjugates of R and let

$$
N(w)=\{t \in T: I(t w)<I(w)\} .
$$

If W^{\prime} is a reflection subgroup of W, then

$$
R^{\prime}=\left\{t \in T: N(t) \cap W^{\prime}=\{t\}\right\}
$$

is a set of Coxeter generators for W^{\prime} and $\left(W^{\prime}, R^{\prime}\right)$ is a Coxeter system.

Combinatorics + Algebra \rightsquigarrow Differential Geometry?

Combinatorics + Algebra \rightsquigarrow Differential Geometry?

INPUT: $(\mathfrak{g}, \mathfrak{p})$
OUTPUT: formulas for invariant differential operators

$$
\begin{aligned}
\lambda & \rightsquigarrow \mathbb{F}_{\lambda} \\
& \rightsquigarrow \mathfrak{g} \hookrightarrow \mathcal{A}_{n} \otimes \mathbb{F}_{\lambda} \\
& \rightsquigarrow \text { SageManifolds }
\end{aligned}
$$

Thank you for attention!

References

References

Mark G. Davidson, Thomas J. Enright, and Ronald J. Stanke. "Differential operators and highest weight representations". In: Memoirs of the American Mathematical Society 94.455 (1991), pp. iv+102.

Bertram Kostant. "Lie Algebra Cohomology and the Generalized Borel-Weil Theorem". In: The Annals of Mathematics. Second Series 74.2 (1961). ArticleType: research-article / Full publication date: Sep., 1961 / Copyright © 1961 Annals of Mathematics, pp. 329-387.

